CEEP Windows

Energy, Carbon, HVAC, Thermal Comfort, and Cost 2025

Agenda

7:00-8:00	Arrival and Breakfast	
8:00-8:50	The Science of Good Window Design and Selection	SME
8:50-9:50	Window Selection Tools: Energy, Carbon, HVAC, Thermal Comfort Analysis and Cost	SME
9:50-10:05	Break (15 min)	
10:05-11:00	Design Detailing & Installation for Durability: New CSA A440	SME
11:00-11:40	VIDEO Spray Rack Test Results & Commentary	Video
11:40-12:00	Q&A, Wrap Up & Summary	
12:00-12:15	Survey	

Natural F Canada

The Science of Good Window Design and Selection

Subject Matter Expert

Canada

Window Selection Tools: Energy, Carbon, HVAC, Thermal Comfort Analysis and Cost

Subject Matter Expert

Overview

- Modelling Tools
- Case Study Archetype Home
- Energy Performance
- HVAC loads
- Carbon
- Comfort and Climate Adaptation
- Partner Challenge questions

UNCLASSIFIED - NON CLASSIFIÉ

6

Modelling Tools

Archetype Home

Archetype Home: 2-Storey, ~2700sf

Canadä

Canada

Archetype Home: 2-Storey, ~2700sf

Reference House – NBC Zone 5

- Ceilings with Attic Space: $R_{eff} = 49.2$
- Above Grade Walls: $R_{eff} = 17.5$
- Exposed Floors: $R_{eff} = 26.5$
- Foundation Walls: $R_{eff} = 16.9$
- Windows: 1.84 U-Value, ER 21, 0.26 SHGC
- Air Tightness: 3.0 ACH @ 50 Pa

20% FDWR Climate Zone 5 (London)

Canada

Reference House – NBC Zone 5

- Principle Ventilation: Exhaust Only
- Space Heating: 95% AFUE Gas Furnace + ECM
- Space Cooling: 14.5 SEER

- Domestic Water Heater: Gas Tank 0.67 EF
- No Drain Water Heat Recovery

20% FDWR Climate Zone 5 (London)

Ressources naturelles atural Resources Canada

Canada

Glass Orientation and FDWR*

*Fenestration and Door to Wall Ratio

Front Glass Orientation – Total Energy

1. North

114.3 GJ (lowest)

2. East

115.1 GJ (0.7% More Energy)

3. South

114.7 GJ (0.4% More Energy)

4. West

Canada

115.8 GJ (1.3% More Energy)

Glass Orientation + FDWR Analysis (Zone 5 – London, ON)

Energy Consumption (GJ) for Each Orientation

Orientation	16% FDWR	20% FDWR	23% FDWR
North	110.9	114.3	64GJ (56%)
South	111.3	114.7	Heating Energy
West	112.5	115.8	and 5GJ (4%)
East	111.7	115.1	Cooling

* The maximum difference is 1.4%.

Conclusion: Window area has a much larger impact on energy consumption than orientation with this archetype.

In colder climate zones with more sun, the FDWR would have more of an impact.

CBAT*

*Cost Benefit Analysis Tool

Cost Benefit Analysis Tool (CBAT) Overview

CBAT offers a good starting point to quickly assess suggested spec packages that meet an Energy Efficiency target.

Targeting Energy Efficiency, CBAT may sometimes prefer windows with mid- to high-SHGC (ie. between ~0.40 and ~0.70)

Natural Resources

 Ressources naturelles Canada

Cost Benefit Analysis Tool (CBAT): NBC Tiers 2-4

FCM	Tier 2	Tier 3	Tier 4	
ECIVI	NBC 9.36 Tier 2 - Capital Cost	NBC 9.36 Tier 3 - Capital Cost	NBC 9.36 Tier 4 - Capital Cost	
Airtightness @ 50 Pa	2.5 ACH	1.5 ACH	1.5 ACH	
Ceiling R-Value	R-40 Fiberglass Blow-in	R-40 Fiberglass Blow-in	R-40 Fiberglass Blow-in	
Wall R-Value	R-22 Effective, Fiberglass Batt, Exterior	R-22 Effective, Fiberglass Batt, Exterior	R-22 Effective, Fiberglass Batt, Exterior Insulation	
Window Type	Double Glazed, U=1.65, SHGC= 0.26, Vinyl Frame	Double Glazed, U=1.65, SHGC= 0.26, Vinyl Frame	Triple Glazed, U=1.08, SHGC= 0.26	
Below Grade Wall R-Value	R-22 Effective, Fiberglass Batt, Exterior Insulation	R-22 Effective, Fiberglass Batt, Exterior Insulation	R-22 Effective, Fiberglass Batt, Exterior Insulation	
Sub-Slab R-Value	Uninsulated Slab	Uninsulated Slab	Uninsulated Slab	
HRV Efficiency	78% Efficiency HRV	78% Efficiency HRV	78% Efficiency HRV	
DHW System	Electric Tank	Electric Tank	Electric Tank	
Drainwater Heat Recovery	None	None	None	
HVAC System	96% Natural Gas Furnace- 50,000 Btu, ECM Motor + AC - 2.5 ton, 14 SEER	Air Source Heat Pump, 3.66 COP	Air Source Heat Pump, 3.66 COP	

Natural Resources Ressources naturelles Canada

Canada

FCNA	Tier 2	Tie	
ECIVI	NBC 9.36 Tier 2 - Capital Cost	NBC 9.36 Tier	
Airtightness @ 50 Pa	2.5 ACH	1.5 ACH	
Ceiling R-Value	R-40 Fiberglass Blow-in	R-40 Fiberglass Blow-in	
Wall R-Value	R-22 Effective, Fiberglass Batt, Exterior Insulation	R-22 Effective, Fiberglas	
Window Type	Double Glazed, U=1.65, SHGC= 0.26, Vinyl Frame	Double Glazed, U=1.65, Frame	
Below Grade Wall R-Value	R-22 Effective, Fiberglass Batt, Exterior Insulation	R-22 Effective, Fibergla Insulation	
Sub-Slab R-Value	Uninsulated Slab	Uninsulated Slab	
HRV Efficiency	78% Efficiency HRV	78% Efficiency HRV	
DHW System	Electric Tank	Electric Tank	
Drainwater Heat Recovery	None	None	
HVAC System	96% Natural Gas Furnace- 50,000 Btu, ECM Motor + AC - 2.5 ton, 14 SEER	Air Source Heat Pump, 3	
Canada Canada		Canada	

	Tier 3	Tier 4
apital Cost	NBC 9.36 Tier 3 - Capital Cost	NBC 9.36 Tier 4 - Capital Cost
	1.5 ACH	1.5 ACH
	R-40 Fiberglass Blow-in	R-40 Fiberglass Blow-in
att, Exterior	R-22 Effective, Fiberglass Batt, Exterior Insulation	R-22 Effective, Fiberglass Batt, Exterior Insulation
GC= 0.26, Vinyl	Double Glazed, U=1.65, SHGC= 0.26, Vinyl Frame	Triple Glazed, U=1.08, SHGC= 0.26
att, Exterior	R-22 Effective, Fiberglass Batt, Exterior Insulation	R-22 Effective, Fiberglass Batt, Exterior Insulation
	Uninsulated Slab	Uninsulated Slab
	78% Efficiency HRV	78% Efficiency HRV
	Electric Tank	Electric Tank
	None	None
0,000 Btu, ECM R	Air Source Heat Pump, 3.66 COP	Air Source Heat Pump, 3.66 COP
	Lirces Ressources naturelles Canada	Canada

Volta Snap Tool

- A new user interface for Hot2000
- Additional features beyond Hot2000
- Easy for energy advisors to show packages (ie. SB12 A3, ENERGYSTAR, NetZero...)
- For new homes and retrofits

Upgrade Pathways Report

	House Components	Exisiting Home	Greener Homes Upgrades
	Ceiling with Attic Space	R31 batt	R28 batt + (x2 layers)
	Cathedral / Vault / Flat	None	None
	Above Grade Walls / Garage Wall	None	3.5" medium density spray foam
	Exposed Floors	None	None
NVELOPE	Foundation Wall	R0 (100%)	R10 batt + R20 batt
ш	Under Basement Slab	RO	R10
	Windows & Sliding Glass Doors	Single glazed (U-val=5.04, SHGC=0.60)	Double glazed with 2 heat mirror 88s (U-val = 0.93, SHGC = 0.25)
	Doors	Solid wood (R2.2)	Solid wood (R2.2)
	Airtightness	13.2 ACH	10.6 ACH
	Principle Ventilation	None	None
HVAC	Space Heating	77.0% AFUE furnace	9.57 HSPF mini-split ductless air source heat pump, ENERGY STAR certified, baseboards backup
	Cooling & Heat Pumps	13.00 SEER A/C	21.50 SEER mini-split ductless air source heat pump, ENERGY STAR certified
Ā	Domestic Water Heater	0.54 EF natural gas conventional tank	3.5 EF heat pump water heater
â	Drain Water Heat Recovery	None	None
	On-site Generation and Storage	None	5 kW Solar PV
	Bathroom Faucets	None	None

2024-04-16

Volta Snap Tool – Parametric Analysis

- Can consider thousands of options in short order (ie. Parametric Analysis)
- Much easier than HTAP (Housing Technology Assessment Platform)
- Provides the inputs for costing with **CBAT** (Cost Benefit Analysis Tool)

New Construction

R-22 Effective, Fiberglass Batt, Exterior Insulation

R-26 Effective, Fiberglass Batt, Exterior Insulation

R-30 Effective, Fiberglass Batt, Exterior Insulation R-40 Effective, Fiberglass Batt, Exterior Insulation

Interior Only (R-15 Effective, Fiberglass Batt)

R-22 Effective, Fiberglass Batt, Exterior Insulation

R-28 Effective, Fiberglass Batt, Exterior Insulation

✓ 96% Natural Gas Furnace, ECM Motor + AC, 4 COP

Cold Climate Air Source Heat Pump, 2.97 COP

Retrofits

ECM Selection

Disable any ECMs that are not of interest. All categories must have at least one ECM enabled.

Ceilings with Attic	Airtightness
✓ R-40 Fibreglass Blown-in	✓ 3.50 ACH
 R-50 Fibreglass Blown-in 	2.50 ACH
✓ R-60 Fibreglass Blown-in	✓ 1.50 ACH
✓ R-70 Fibreglass Blown-in	✓ 1.00 ACH
✓ R-80 Fibreglass Blown-in	✓ 0.60 ACH
Above Grade Walls	Windows
✓ R-16 Effective, Fiberglass Batt, Standard Wall	✓ Double Glazed, U=1

- 1.65, SHGC= 0.19, Vinyl Frame
- Double Glazed, U=1.65, SHGC= 0.26, Vinyl Frame
- Triple Glazed, U=1.08, SHGC= 0.17, Vinyl Frame
- Triple Glazed, U=1.08, SHGC= 0.26, Vinyl Frame

Foundation Slab (Below Grade)

- Uninsulated
- R-10 Effective, Sub-slab Insulation, XPS
- R-20 Effective, Sub-slab Insulation, XPS

Domestic Hot Water System

- Natural Gas Tank, 190L, 0.67 EF
- Natural Gas, Condensing Tankless, 0.95 EF
- Electric Tank, 190L, 0.87 EF
- Heat Pump Water Heater, 190L, 2.35 EF

Drain Water Heat Recovery

Heating and Cooling Systems

Electric Baseboard + AC, 4 COP

Air Source Heat Pump, 3.66 COP

Exterior Foundation Wall

- None
- V DWF R unit, 5 % 2ft

All remaining categories only contain one ECM option and may not be toggled off

Batch Size (Max 150000)

144000

Canada

Volta Snap Tool – Parametric Analysis

Retrofits
st have at least one ECM enabled.
Airtightness
 3.50 ACH 2.50 ACH 1.50 ACH 1.00 ACH 0.60 ACH
Windows
 Double Glazed, U=1.65, SHGC= 0.19, Vinyl Fra Double Glazed, U=1.65, SHGC= 0.26, Vinyl Fra Triple Glazed, U=1.08, SHGC= 0.17, Vinyl Fran

- R-30 Effective, Fiberglass Batt, Exterior Insulation
- R-40 Effective, Fiberglass Batt, Exterior Insulation

Canada

- ame
- ame
- ne
- ✓ Triple Glazed, U=1.08, SHGC= 0.26, Vinyl Frame

Exterior Foundation Wall

- ✓ Interior Only (R-15 Effective, Fiberglass Batt)
- R-22 Effective, Fiberglass Batt, Exterior Insulation
- R-28 Effective, Fiberglass Batt, Exterior Insulation

Heating and Cooling Systems

- Electric Baseboard + AC, 4 COP
- 96% Natural Gas Furnace, ECM Motor + AC, 4 COP
- ✓ Air Source Heat Pump, 3.66 COP
- ✓ Cold Climate Air Source Heat Pump, 2.97 COP

Drain Water Heat Recovery

- None
- DWHR unit, 55% Eff.

All remaining categories only contain one ECM option and may not be toggled off.

Batch Size (Max 150000)

144000

Foundation Slab (Below Grade)

- Uninsulated
- R-10 Effective, Sub-slab Insulation, XPS
- R-20 Effective, Sub-slab Insulation, XPS

Domestic Hot Water System

- Natural Gas Tank, 190L, 0.67 EF
- Natural Gas, Condensing Tankless, 0.95 EF
- Electric Tank, 190L, 0.87 EF
- Heat Pump Water Heater, 190L, 2.35 EF

Ressources naturelles Natural Resources Canada

Canadä

Tableau Dashboard for Window Comparison

Caledon GDS House Optimizer

Developed by the NRCan LEEP Team.

Canada

Disclaimer: Different house forms and modelling assumptions may produce different results than those displayed here.

Tableau Dashboard

Natural Resources Ressources naturelles Canada

Canada

Energy Performance of Windows

Canada

Window Selection – Impact on Total Energy Consumption

Energy Consumption compared against the NBC Reference Case

	1.6 U-Value		1.44 U-Value		1.22 U-Value	
	0.40 SHGC	0.19 SHGC	0.40 SHGC	0.19 SHGC	0.40 SHGC	0.19 SHGC
Energy Consumption (GJ)	105.3	114.2	102.5	109.4	98.8	105.6
% Energy Savings*	7.9%	> 0.1%	10.3%	4 .3%	13.6%	> 7.6%

* Relative to reference house

- Lower U-Values mean lower Energy Consumption
- Lower SHGC mean higher Energy Consumption

Energy Star Windows Searchable Product List

Energy Efficiency Ratings: Search

Windows (Select a New Product)

Windows and doors are eligible for ENERGY STAR® based on their U-factor that measures their overall heat loss, or, their Energy Rating (ER) that combines their passive solar heat gain (SHGC) through the glass with their overall heat loss and air leakage. Models must have a U-factor of 1.22 W/m2 or lower, or, an ER of 34 or higher.

To find models that are the most efficient, select the ENERGY STAR Most Efficient checkbox in the "Energy Efficiency Criteria" section below. Models must have a U-factor of 1.05 W/m2 or lower, or, an ER of 40 or higher.

Caution is advised when selecting windows and sliding glass doors with passive solar heat gain (SHGC) values above 0.45 that will face south or west, especially if there is more glass area than exterior wall area (high window to wall ratio), as this could cause uncomfortably warm room temperatures and higher cooling costs.

Seeking advice from a qualified Energy Advisor can help ensure that you choose the right windows and doors to lower your energy bills and have optimal thermal comfort in all seasons.

Products contained on this list may be different from the Greener Homes program list.

Models: 210.677 ENERGY STAR[®]: 210.677

Energy Efficiency Criteria				
ENERGY STAR Most Eff	icient 2020 - 2024: 😢 🗌			
U-factor (W/m² - K): 👔 Range: 0.57 to 1.98				
Minimum:	Maximum:			
Solar Heat Gain (SHGC): Range: 0 to 0.76	0			
Minimum:	Maximum:			
Energy Rating: 🕢 Range: 16 to 53 Minimum:	Maximum:			

https://oee.nrcan.gc.ca/pml-Imp/index.cfm?action=app.search-recherche&appliance=WINDOWS

Canada

Ressources naturelles Natural Resources Canada

Impact of Window vs Insulation Upgrades

% Energy Savings for Each Upgrade Relative to Reference House

Impact of Window vs. Insulation Upgrades

- For a home with a high FDWR (20%)
- Reference house window specifications: 1.84 U-Value

Natural Resources Ressources naturelles Canada

Canada

adä

Whole Envelope Effective R-Value

Triple Glazing vs R10 CI Sheathing

Fenestration and Doors to Wall Ratio (FDWR)

 Ressources naturelles Canada

SHGC and HVAC

Cooling Equipment Sizing – Impact of SHGC

CSA F280-12 Design Heat Loss Heat Gain (btu/h) for Various U-Values & SHGC

CSA F280-12	1.6 U-Value		1.44 U-Value		1.22 U-Value	
Design Loads	0.40 SHGC	0.19 SHGC	0.40 SHGC	0.19 SHGC	0.40 SHGC	0.19 SHGC
Heat Loss (btu/h)	39,544	39,899	38,348	38,052	36,701	36,555
Heat Gain (btu/h)	30,185	> 20,653	29,952	> 20,293	29,631 >	20,001

- Lower U-Values mean lower Heat Loss (ie. Heating demand)
- Lower SHGC mean lower Heat Gain (ie. Cooling demand)

Impact of Solar Heat Gain – Cooling Load

Early decision to limit windows to low solar gain helps control cooling loads

Almost 1 ton of cooling load difference!

Canada

latural Resources Ressources naturelles Canada

Impact on Cooling and Duct Sizing

Base (Typical) Window (U1.6, ER 25, SHGC~0.45)

High Performance Window Product (U0.9, SHGC 0.20)

Design Heat Loss = 41,821 BTU/hr Design Heat Gain = 44,382 BTU/hr

Duct Size: 28x10

4 Ton ASHP / AC

Design Heat Loss = 34,791 BTU/hr Design Heat Gain = 25,561 BTU/hr

Duct Size: 24x8

2.5 Ton ASHP / AC

Canada

Ressources naturelles atural Resources Canada

Carbon Emissions

Operational Carbon Emissions

Annual Operational Carbon Emissions (tonnes CO₂e/yr) for Various U-Values

Code Window 1.84 U-Value, 0.26 SHGC	1.6 U-Value, 0.4 SHGC	1.44 U-Value, 0.4 SHGC	1.22 U-Value, 0.4 SHGC
4.6	4.0	3.9	3.7
Doι	uble Glazed		Triple Glazed
Natural Resources Ressources naturelles			Canadä

Upfront Embodied Carbon Emissions

54.9 m² Window Area and 20% FDWR

Impact of frame material selection

Frame Material	Vinyl	Wood	
Embodied Carbon (Tonnes CO ₂ e)	4.72	3.95 -16.	3%

Ressources naturelles Natural Resources Canada

Canada

Upfront Embodied Carbon Emissions

- Frame material does not define energy performance
 - Data from manufacturer is required
 - Choice also impacts aesthetics and cost

Upfront Embodied Carbon Emissions

54.9 m² Window Area and 20% FDWR

Carbon ROI: Operational vs Embodied

54.9 m² Window Area and 20% FDWR

Window Type	Embodied tCO ₂ e	Operational tCO ₂ e	
Double glazed vinyl (U 1.61, 0.26 SHGC)	4.72	4.6	
Triple glazed vinyl (U 1.22, 0.4 SHGC)	+0.71 tCO ₂ e 5.43	-0.9 tCO ₂ e/yr 3.7	

<1 year "return" on carbon investment

Natural Resources

 Ressources naturelles Canada

30 Year Carbon Emissions

Natural Resources Ressources naturelles Canada Canada

41

Comfort

Comfort

- Choice of windows can greatly impact the perceived comfort in the home.
- High U-value (lower energy performance) can make for more heat loss and discomfort in the winter
 - Radiant heat loss causes the heat transfer from the occupant's skin to the cold surface, 'pulling' the heat away faster as you get closer to the surface
- High SHGC allows much more heat from the sun through
 - Causes overheating of surfaces
 - Combined with lots of insulation = Overheating in rooms/areas with lots of windows

Comfort ASHRAE 55

Let's Start with Defining Comfort

- Air temperature ightarrow
- Humidity •
- Air speed •
- Surrounding surface • temperature
- Gender, age •

Canada

Metabolic rate % clothing •

ANSI/ASHRAE Standard 55-2010 (Supersedes ANSI/ASHRAE Standard 55-2004) Includes ANSI/ASHRAE addenda listed in Appendix I

Thermal Environmental **Conditions for** Human Occupancy

See Appendix I for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors. and the American National Standards Institute

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site (www.ashrae.org) or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from the ASHRAE Web site (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ISSN 1041-2336

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ANSI/ASHRAE Standard 55-2010

(Supersedes ANSI/ASHRAE Standard 55-2004)

Includes ANSI/ASHRAE addenda listed in Appendix I

Comfort ASHRAE 55

Comfort Variables

The human body transfers energy (heat) by:

- 15% humidity / perspiration
- 35% convection / \bullet conduction to air

Canada

50% radiation to \bullet surrounding surfaces

Thermal Environmental **Conditions for** Human Occupancy

See Appendix I for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors. and the American National Standards Institute

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site (www.ashrae.org) or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from the ASHRAE Web site (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ISSN 1041-2336

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Thermal Comfort & Window Ratings

ASHRAE 55 and Windows Zone 5-6

- 1m from glass, patio door •
- Winter: Acceptable room side glass/wall surface threshold temp= 57F or 14C •
- Summer: Discomfort from any hour/elevation with solar gain greater than 70 btu/hr-ft².°F

Single, metal frame

- Winter: 3000+ hrs of discomfort •
- Summer: 300+ hrs of discomfort

Double 1.4 -1.6U, insulated, SHGC 0.55

- Winter: 500+ hrs of discomfort •
- Summer: 75+ hrs of discomfort

Triple 1.2>U, insulated, SHGC 0.22

Winter: negligible •

Canada

Summer: negligible

latural Resources Ressources naturelles Canada

ada

Thermal Comfort & Window Ratings

<u>Cardinal Glass Industries</u> <u>"Comfort Calculator"</u>

www.cardinalcorp.com/technology/applications/comfortcalculator/

Natural Resources Canada

 Ressources naturelles Canada

Comfort Demo – Winter with Code Windows

WINTER NIGHT

Natural Resources Ressources naturelles Canada

Canada

Comfort Demo – Winter with Code Triples

© LOCATION	E366	())) glass type 3P - 2E
WINDOW SIZE	←=> GAP WIDTH 9.8MM	NONE
LARGE :	GAS FILL	CLASS 3

COMFORT NEAR THE WINDOW In this location, and with this window size, the U-Bactor will provide acceptable cold weather thermal comfort throughout the entire living space.

WINTER NIGHT

Comfort Demo – Summer with High SHGC

© LOCATION KELOWNA, BC	COATING E180	GLASS TYPE 2P
WINDOW SIZE	↔ GAP WIDTH 13.0MM :	ROOM-SIDE COATING
LARGE \$	O [°] GAS FILL	L FRAME CLASS

COMFORT WITH SHADES PARTIALLY OPEN In this location, and with this window size, a lower SHGC is desirable. Hot weather thermal comfort is compromised unless the shades are partially closed.

SUMMER DAY

Comfort Demo – Summer with Low SHGC

LOCATION KELOWNA, BC	³ ℃ LOĒ COATING E366	GLASS TYPE 3P - 2E
WINDOW SIZE	↔ GAP WIDTH 9.8MM [*]	ROOM-SIDE COATING
LARGE \$	O [°] GAS FILL	CLASS 3

COMFORT WITH SHADES OPEN

In this location, and with this window size, the SHGC is low enough to provide hot weather comfort when the shades are fully open.

SUMMER DAY

Windows & Humidity Optimization

Healthy Interior Humidity

- Summer 45% RH +-5%
- Winter 35% RH +-5%

Condensation resistance of window in cold climates?

Canadä

Natural Resources Ressources naturelles Canada

Canada

Climate Adaptation & Windows

Changes to

- Driving Rain Wind Pressures 1/5
- Moisture Index
- 1 Day Rain (1/50): 15 minute
- Heating degree Days
- January Design Temps 1%/2.5%

"Approach to Update Climatic Design Data for climate change in the NBC and NECB "National Research Council 2023

Canada

Vatural Resources Ressources naturelles Canada

Climate Adaptation & Windows

Potential Design Implications

- CSA A440.4/.6 updates e.g. height of back dam
- Required use of Capillary break between 1st and 2nd plane of protection (increased drainage space depth and coverage)
- Reduce window / glazing Solar Heat Gain SHG through use of additional LowE coating and/or exterior shading devices
- Mechanical systems that provide life-safety cooling (AC/ASHP) of both sensible and latent (dehumidification) loads

"Approach to Update Climatic Design Data for climate change in the NBC and NECB " National Research Council 2023

Driving rain wind pressure Increases in future projected values

CSA A440.4 Window, Door, And Skylight Installation

CSA A440.6 High Exposure Fenestration Installation

 Consideration of height of back dam of flashing in wall assembly

Increases in future projected values of July design temperatures

Increased occurrence of overheating events - extreme heat events Extreme heat: Temperature of ≥ 30°C & humidex ≥ 40 | Extreme heat event: > 4 days To alleviate risk of overheating in buildings consideration given to use of:

Larger capacity cooling & dehumidifying systems; e.g. heat pump + dehumidifier

Option 1: Sill Flashing with Back Dam Angle

Vatural Resources Ressources naturelles Canada

Canada

Climate Adaptation

- All of these strategies we've been discussing will help us to adapt our buildings to more extreme weather
 - Better enclosures including windows to keep the heat in/out
 - Low solar heat gain windows to keep the heat out
- We may have to think about more strategies to maximize the **passive survivability***
 - Overhangs
 - Operable windows
 - Passive ventilation
- Performance simulations to determine 'hours of safety'

Passive Survivability: A buildings ability to maintain critical, life support systems and interior conditions wherein occupants can survive during operational power outages that coincide with extreme temperature conditions e.g. heat "dome".

Canada

Ressources naturelles latural Resources Canada

Difference in Building Design and Climate

Window Selection for Homes

SCENARIO: Window selection for 2 storey 2700 ft2 home with 20% FDWR in climate Zone 5

1. Performance

2. Energy + Carbon

Building Code

- U value or ER Occupant Comfort
- Orientation / WWR
- □ SHGC (high/mid/low)
- R value(U) Warm surface
- Condensation resistance HVAC **Right Sizing Equipment and** Delivery
- U + SHGC

Canada

Orientation + Overhangs/shading

Consider

- Energy Model Building-Wholehome impact
- □ Air tightness/Blower Door Test impact –Slider vs casement
- Operational Carbon Impact
- Embodied Carbon Impact

Total Cost

□ Install Cost – Including opening prep and flash

3. Total Cost +Availability

- Impact on HVAC equipment size and duct system size
- Impact on customer satisfaction and warranty e.g. condensation or comfort calls
- Other...

Design Detailing & Installation for Durability: New CSA A440

Subject Matter Expert

Canada

Ressources naturelles Vatural Resources Canada

dä

VIDEO: Installation Demonstration and Test

Subject Matter Expert

Natural Resources R Canada C

Ressources naturelles Canada

Video Overview

- Installation of a flanged window into a rough opening
 - Demonstration of flashing sequencing and materials
- Window installation demo using 2 methods:
 - CSA A440 (minimum base)
 - Modified AAMA 100A (higher exposure alternative)
- Windows subjected to ASTM E331 Applied Wind and Water test
 - Brief overview of any observed failures or weaknesses.

VIDEO: Installation Demonstration and Test

Canada

Video Summary

Confidence in CSA A440

Demonstration of flashing sequencing and materials

Consideration of augmentations for improved performance

- Good/better/best materials
- Cost-benefit of additional materials & time vs. warranty call-backs/risks

Feedback

Please take a few minutes to provide some feedback that is valuable to improving this session in the future. Please scan this QR code and answer the survey questions on your phone or tablet. Thank you!

Canada

Ressources naturelles atural Resources Canada

Thank You

Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2024.

